Correlation of critical heat flux in hybrid jet impingement/micro-channel cooling scheme

نویسندگان

  • Myung Ki Sung
  • Issam Mudawar
چکیده

Experiments were performed to investigate the two-phase cooling characteristics of a new hybrid cooling scheme combining the cooling attributes of slot jets and micro-channel flow. A test module was constructed in which dielectric PF-5052 liquid was introduced through five 0.48 mm wide and 12.7 mm long slot jets, each leading to a 1.59 mm wide and 1.02 mm deep channel. Increases in flow rate and subcooling yielded similar trends of delaying the inception of boiling and increasing critical heat flux (CHF). A previous channel flow correlation predicted CHF values far smaller than measured, while those for slot jets yielded closer predictions. This proves the cooling performance of the hybrid configuration is dominated more by jet impingement than by micro-channel flow. By dividing the test surface into a portion that is dominated by jet impingement and another by micro-channel flow, and applying the appropriate CHF correlation for each portion, the CHF data for this hybrid cooling configuration are predicted with a mean absolute error of 8.42%. 2006 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-phase and two-phase heat transfer characteristics of low temperature hybrid micro-channel/micro-jet impingement cooling module

This study examines the single-phase and two-phase cooling performance of a hybrid micro-channel/micro-jet impingement cooling scheme using HFE 7100 as working fluid. This scheme consists of supplying coolant from a series of jets that deposit liquid into the micro-channels. A single-phase numerical scheme that utilizes the k–e turbulent model and a method for determining the extent of the lami...

متن کامل

Single-phase hybrid micro-channel/micro-jet impingement cooling

A new hybrid cooling scheme is proposed for high-flux thermal management of electronic and power devices. This scheme combines the cooling benefits of micro-channel flow and micro-jet impingement with those of indirect refrigeration cooling. Experiments were performed to assess single-phase cooling performance using HFE 7100 as working fluid. Excellent predictions were achieved using the standa...

متن کامل

Effects of jet pattern on single-phase cooling performance of hybrid micro-channel/micro-circular-jet-impingement thermal management scheme

This study explores the single-phase cooling performance of a hybrid cooling module in which a series of micro-jets deposit coolant into each channel of a micro-channel heat sink. This creates symmetrical flow in each micro-channel, and the coolant is expelled through both ends of the micro-channel. Three micro-jet patterns are examined, decreasing-jet-size (relative to center of channel), equa...

متن کامل

CHF determination for high-heat flux phase change cooling system incorporating both micro-channel flow and jet impingement

This paper explores the subcooled nucleate boiling and critical heat flux (CHF) characteristics of a hybrid cooling module that combines the cooling attributes of micro-channel flow and jet impingement. A test module was constructed and tested using HFE-7100 as working fluid. Increasing the coolant’s flow rate and/or subcooling shifted both the onset of boiling (ONB) and CHF to higher heat flux...

متن کامل

Effects of jet pattern on two-phase performance of hybrid micro-channel/micro-circular-jet-impingement thermal management scheme

This paper explores the two-phase cooling performance of a hybrid cooling scheme in which a linear array of micro-jets deposits liquid gradually along each channel of a micro-channel heat sink. The study also examines the benefits of utilizing differently sized jets along the micro-channel. Three micro-jet patterns, decreasing-jet-size (relative to center of channel), equal-jet-size and increas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006